Abstract

A method is developed for obtaining solutions to the Boltzmann neutron transport equation on irregular triangular grids with nonorthogonal boundaries and anisotropic scattering. A functional is developed from the canonical form of the multigroup transport equation. The angular variable is then removed by expanding the functional in spherical harmonics, retaining only the first two flux moments and limiting the scattering to be linearly anisotropic. The finite element method is then implemented using quadratic Lagrange-type interpolating polynomials to span the spatial domain. The resultant set of coupled linear equations is then solved iteratively using the block successive over-relaxation method. A number of numerical experiments are performed to evaluate the performance of the proposed method. The results are compared to the results obtained by various established methods. In all cases, aggrement is excellent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.