Abstract

An algorithm for determining crystal structures from diffraction data is described which does not rely on the usual reciprocal-space formulations of atomicity. The new algorithm implements atomicity constraints in real space, as well as intensity constraints in reciprocal space, by projections that restore each constraint with the minimal modification of the scattering density. To recover the true density, the two projections are combined into a single operation, the difference map, which is iterated until the magnitude of the density modification becomes acceptably small. The resulting density, when acted upon by a single additional operation, is by construction a density that satisfies both intensity and atomicity constraints. Numerical experiments have yielded solutions for atomic resolution X-ray data sets with over 400 non-hydrogen atoms, as well as for neutron data, where positivity of the density cannot be invoked.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.