Abstract
The boundary layer equation of the pseudoplastic fluid over a flat plate is considered. This equation is a boundary value problem (BVP) with the high nonlinearity and a boundary condition at infinity. To solve such problems, powerful numerical techniques are usually used. Here, through using differential transform method (DTM), the BVP is replaced by two initial value problems (IVP) and then multi-step differential transform method (MDTM) is applied to solve them. The differential equation and its boundary conditions are transformed to a set of algebraic equations, and the Taylor series of solution is calculated in every sub domain. In this solution, there is no need for restrictive assumptions or linearization. Finally, DTM results are compared with the numerical solution of the problem, and a good accuracy of the proposed method is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.