Abstract

When transport is advection-dominated, classical numerical methods introduce excessive artificial diffusion and spurious oscillations. Special methods are required to overcome these phenomena. To solve the advection‒diffusion equation, a numerical method is developed using a discontinuous finite element method for the discretization of the advective terms. At the discontinuities of the approximate solution, numerical advective fluxes are calculated using one-dimensional approximate Riemann solvers. The method is stabilized with a multidimensional slope limiter which introduces small amounts of numerical diffusion when sharp concentration fronts occur. In addition, the diffusive term is discretized using a mixed hybrid finite element method. With this approach, numerical oscillations are completely avoided for a full range of cell Peclet numbers. The combination of discontinuous and mixed finite elements can be easily applied to 2D and 3D models using various types of elements in regular and irregular meshes. Numerical tests show good agreement with 1D and 2D analytical solutions. This approach is compared at the same time with two different numerical methods, a standard mixed finite method and a finite volume approach with high-resolution upwind terms. Regular and irregular meshes are used for the numerical tests to study the mesh effects on the numerical results. Our data show that in all cases this approach performs well. © 1997 by John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.