Abstract

Purpose – The purpose of this paper is to present a modified version of the hybrid Finite Element Method-Dirichlet Boundary Condition Iteration method for the solution of open-boundary skin effect problems. Design/methodology/approach – The modification consists of overlapping the truncation and the integration boundaries of the standard method, so that the integral equation becomes singular as in the well-known Finite Element Method-Boundary Element Method (FEM-BEM) method. The new method is called FEM-SDBCI. Assuming an unknown Dirichlet condition on the truncation boundary, the global algebraic system is constituted by the sparse FEM equations and by the dense integral equations, in which singularities arise. Analytical formulas are provided to compute these singular integrals. The global system is solved by means of a Generalized Minimal Residual iterative procedure. Findings – The proposed method leads to slightly less accurate numerical results than FEM-BEM, but the latter requires much more computing time. Practical implications – Then FEM-SDBCI appears more appropriate than FEM-BEM for applications which require a shorter computing time, for example in the stochastic optimization of electromagnetic devices. Originality/value – Note that FEM-SDBCI assumes a Dirichlet condition on the truncation boundary, whereas FEM-BEM assumes a Neumann one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call