Abstract

AbstractThis paper is concerned with the development of a numerical procedure for solving complex boundary value problems in plane elastostatics. This procedure—the displacement discontinuity method—consists simply of placing N displacement discontinuities of unknown magnitude along the boundaries of the region to be analyzed, then setting up and solving a system of algebraic equations to find the discontinuity values that produce prescribed boundary tractions or displacements. The displacement discontinuity method is in some respects similar to integral equation or ‘influence function’ techniques, and contrasts with finite difference and finite element procedures in that approximations are made only on the boundary contours, and not in the field. The method is illustrated by comparing computed results with the analytical solutions of two boundary value problems: a circular disc subjected to diametral compression, and a circular hole in an infinite plate under a uniaxial stress field. In both cases the numerical results are in excellent agreement with the exact solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.