Abstract

The Galerkin finite element method (FEM) is used for solving the incompressible Navier–Stokes equations in 2D. Regular triangular elements are used to discretize the domain and the finite-dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual-free bubble (RFB) functions. To find the bubble part of the solution, a two-level FEM with a stabilizing subgrid of a single node is described in our previous paper [Int. J. Numer. Methods Fluids 58, 551–572 (2007)]. The results for backward facing step flow and flow through 2D channel with an obstruction on the lower wall show that the proper choice of the subgrid node is crucial to get stable and accurate solutions consistent with the physical configuration of the problems at a cheap computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.