Abstract

A solution has been derived for the Navier equations in orthogonal cylindrical curvilinear coordinates in which the axial variable, X3, is suppressed through a Fourier transform. The necessary coordinate transformation may be found either analytically or numerically for given geometries. The finite-difference forms of the mapped Navier equations and boundary conditions are solved in a rectangular region in the curvilinear coordinaties. Numerical results are given for the half space with various surface shapes and boundary conditions in two and three dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.