Abstract

Abstract The reduced one group population balance (PBE) model, the One Primary and One Secondary Particle Model (OPOSPM) is developed for a liquid extraction column. It is used because of its simplicity and the ability to reproducemost of the information contained in the PBE. It is usedto estimate the optimum droplet breakage and coalescence parameters using steady state experimental data. The data is obtained from a pilot plant liquid extraction column of 80 mm diameter and 4.4 m height for toluene-acetone-water chemical test system as recommended by the European Federation of Chemical Engineering (EFCE). In this contribution Coulaloglou and Tavlarides (1977)breakage and coalescence model is studied to obtain the parameters by solving a population balance inverse problem. The estimated droplet parameters are used as input parameters for the CFD simulation and in the simulation program PPBLAB.The optimized values were found to predict accurately the mean dispersed phase holdup, mean droplet diameter and the concentration profile for the continuous and dispersed phase along the extraction column height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.