Abstract

The problem of approximating the solution of infinite linear systems finitely expressed by a sparse coefficient matrix in block Hessenberg form is considered. The convergence of the solutions of a sequence of truncated problems to the infinite problem solution is investigated. A family of algorithms, some of which are adaptive, is introduced, based on the application of the Gauss–Seidel method to a sequence of truncated problems of increasing size n i with non-increasing tolerance 10 −t i . These algorithms do not require special structural properties of the coefficient matrix and they differ in the way the sequences {n i} and {t i} are generated. The testing has been performed on both infinite problems arising from the discretization of elliptical equations on unbounded domains and stochastic problems arising from queueing theory. Extensive numerical experiments permit the evaluation of the various strategies and suggest that the best trade-off between accuracy and computational cost is reached by some of the adaptive algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.