Abstract

An incompressible Navier–Stokes solver based on a cell-centre finite volume formulation for unstructured triangular meshes is developed and tested. The solution methodology makes use of pseudocompressibility, whereby the convective terms are computed using a Godunov-type second-order upwind finite volume formulation. The evolution of the solution in time is obtained by subiterating the equations in pseudotime for each physical time step, with the pseudotime step set equal to infinity. For flows with a free surface the computational mesh is fitted to the free surface boundary at each time step, with the free surface elevation satisfying a kinematic boundary condition. A ‘leakage coefficient’, ε, is introduced for the calculation of flows with a free surface in order to control the leakage of flow through the free surface. This allows the assumption of stationarity of mesh points to be made during the course of pseudotime iteration. The solver is tested by comparing the output with a wide range of documented published results, both for flows with and without a free surface. The presented results show that the solver is robust. © 1999 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.