Abstract

The purpose of this work is to study a class of inverse problems that arises in solid mechanics areas such as quantitative non-destructive testing (QNDT) or shape optimization. The technique is based on the boundary integral equations (BIEs) used in the classical boundary element method (BEM), which are differentiated semi-analytically with respect to variations of the boundary geometry and used in an iterative search algorithm. The extension of this strategy is presented here for the case of elasticity in dynamics using the displacement or singular BIE, which allows to apply this strategy to QNDT problems based on vibrations or ultrasonics. The central point is the evaluation of the capability of solving numerically a QNDT problem such as the location and characterization of cavity and inclusion-type defects by measuring the dynamic response at an accessible boundary of the specimen. To test this capability, comprehensive convergence tests are made for the badness of the initial guess, the amount of supplied measurements, and simulated errors on measurements, geometry, elastic constants and frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.