Abstract

In this work, a new time marching technique is proposed to analyze hyperbolic bioheat transfer problems. In this new approach, time integration parameters adapt themselves along the solution process, in accordance to the properties and results of the model. Thus, the time integrators are locally evaluated, assuming different values along the spatial and temporal discretizations, enabling a more accurate and effective solution algorithm. The proposed technique has guaranteed stability, it is truly self-starting, and it is formulated as a non-iterative single-step/solver procedure, demanding low computational efforts. As illustrated in the manuscript, the methodology is very accurate, robust and simple to implement, providing a suitable numerical approach to analyze hyperbolic bioheat conduction models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.