Abstract

The integration of production and marketing planning is crucial in practice for increasing a firm’s profit. However, the conventional inventory models determine the selling price and demand quantity for a retailer’s maximal profit with exactly known parameters. When the demand quantity, unit cost, and production rate are represented as fuzzy numbers, the profit calculated from the model should be fuzzy as well. Unlike previous studies, this paper develops a solution method to find the fuzzy profit of the integrated production and marketing planning problem when the demand quantity, unit cost, and production rate are represented as fuzzy numbers. Based on Zadeh’s extension principle, we transform the problem into a pair of two-level mathematical programming models to calculate the lower bound and upper bound of the fuzzy profit. According to the duality theorem of geometric programming technique, the two-level mathematical program is transformed into the one-level conventional geometric program to solve. At a specific α-level, we can derive the global optimum solutions for the lower and upper bounds of the fuzzy profit by applying well-developed theories of geometric programming. Examples are given to illustrate the whole idea proposed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.