Abstract

Fractional Order Differential equations are used for modelling of a wide variety of biological systems but the solution process of such equations are quite complex. In this paper Orthogonal Triangular functions and their operational matrices have been used for finding an approximate solution of Fractional Order Differential Equations. This technique has been found to be more powerful in solving Fractional Order Differential Equations owing to the fact that the differential equations are reduced to systems of algebraic equations which are easy to solve numerically and the percentage error is lower compared to other methods of solutions (like: Laplace Transform Method). Also due to the recursive nature of this method, it can also be concluded that this method is less complex and more efficient in solving varieties of the Fractional Order Differential Equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.