Abstract

Analytic expressions are found for Euler's Equations of Motion and for the Eulerian Angles for both symmetric and near symmetric rigid bodies under the influence of arbitrary constant body-fixed torques. These solutions provide the body-fixed angular velocities and the attitude of the body, respectively, as functions of time. They are of special interest in applications to spinning spacecraft (such as the Galileo Spacecraft to be launched in 1984) because they include the effect of time-varying spin rate. Thus they can be applied to spin-up and spin-down maneuvers as well as to error analysis for thruster misalignments. The solutions are given for arbitrary initial conditions in terms of Fresnel, Sine and Cosine Integrals. Numerical integration of the governing differential equations has verified that the approximate analytic solutions are very accurate in many physical situations of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call