Abstract
In most structural problems the object is usually to find the distribution of stress in elastic body produced by an external loading system. The theory of elasticity is a methodology that creates a linear relation between the imposing force (stress) and resulting deformation (strain), for the majority of materials, which behave fully or partially elastically. This paper is devoted to combined semianalytical and numerical static analysis of three-dimensional structures. The stress-strain or constitutive behavior is given for isotropic materials. Solution of multipoint (particularly, two-point) boundary problem of three-dimensional elasticity theory based on combined application of finite element method (FEM) and discrete-continual finite element method (DCFEM) is under consideration. The given domain, occupied by structure, is embordered by extended one within method of extended domain. The application field of DCFEM comprises fragments of structure (subdomains) with regular (constant or piecewise constant) physical and geometrical parameters in some dimension (“basic” dimension). DCFEM presupposes finite element mesh approximation for non-basic dimensions of extended domain while in the basic dimension problem remains continual (corresponding correct analytical solution is constructed). FEM is used for approximation of all other subdomains. Discrete (within FEM) and discrete-continual (within DCFEM) approximation models for subdomains and coupled multilevel approximation model for extended domain are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.