Abstract

AbstractThe paper illustrates a numerical technique to solve a system of three partial differential equations that govern the problem of Rayleigh‐Bénard‐Brinkman convection in a two‐dimensional porous rectangular box. As a result of linear and weakly nonlinear stability analyses of the system a boundary eigenvalue problem (BEVP) and an initial boundary value problem (IBVP) arise. Spatial information on the periodicity of the convection cells is first used in the system of PDEs to make it possible for the successive linearization method (SLM) to be applied. The resulting much‐simplified versions of BEVP and the IVP are then solved by direct and time multi‐stepping versions of SLM, respectively. The SLM solution of the BEVP is compared with that obtained through MATLAB routine bvp4c and the multi‐stepping‐SLM solution of the IVP is validated with that of the Runge‐Kutta‐Fehlberg (RKF45) method (using MATLAB routine ode45). The present numerical technique is found to have quadratic convergence for any desired accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call