Abstract

We consider a problem of wave diffraction by a half-plane with general boundary and transmission conditions of first and second kind. The problem is taken in the framework of Bessel potential spaces and several Wiener-Hopf operators are introduced in order to translate the conditions initially stated. Similar problems can be found in the work of E. Meister and F.-O. Speck (see, e.g., []). In the present work, the main difference is the possibility to consider a real wave number. The class in study contains, as a particular case, the Rawlins’ Problem [] which was already considered by K. Rottbrand also in the limiting case of a wave number with a null imaginary part []. The study is carried out with the help of some factorization techniques, certain projectors and a representation due to Laplace-type integrals. As a consequence, the exact solution of the problem is obtained in a form that is still valid for the limiting case of a real wave number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.