Abstract

AbstractThe Karhunen–Loève Galerkin procedure is employed to solve an inverse radiation problem of determining the time‐varying strength of a heat source, which mimics flames in a furnace, from temperature measurements in three‐dimensional participating media where radiation and conduction occur simultaneously. The inverse radiation problem is solved through the minimization of a performance function, which is expressed by the sum of square residuals between calculated and observed temperature, using a conjugate gradient method. Through the Karhunen–Loève Galerkin procedure, one can represent the system dynamics with a minimum degree of freedom, and consequently the amount of computation required in the solution of the inverse problem is reduced drastically when the present technique is adopted. Copyright © 2004 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.