Abstract

We develop the theory of electronic Mach-Zehnder interferometers built from quantum Hall edge states at Landau level filling factor \nu = 2, which have been investigated in a series of recent experiments and theoretical studies. We show that a detailed treatment of dephasing and non-equlibrium transport is made possible by using bosonization combined with refermionization to study a model in which interactions between electrons are short-range. In particular, this approach allows a non-perturbative treatment of electron tunneling at the quantum point contacts that act as beam-splitters. We find an exact analytic expression at arbitrary tunneling strength for the differential conductance of an interferometer with arms of equal length, and obtain numerically exact results for an interferometer with unequal arms. We compare these results with previous perturbative and approximate ones, and with observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.