Abstract

This paper solves a recently proposed industrial benchmark test (Šarler et al., 2012 [1]) by a meshless method. The physical model is established on a set of macroscopic equations for mass, energy, momentum, turbulent kinetic energy, and dissipation rate in two dimensions. The mixture continuum model is used to treat the solidification system. The mushy zone is modeled as a Darcy porous media with Kozeny–Karman permeability relation, where the morphology of the porous media is modeled by a constant value. The incompressible turbulent flow of the molten steel is described by the Low-Reynolds-Number (LRN) k–ε turbulence model, closed by the Abe–Kondoh–Nagano closure coefficients and damping functions. The numerical method is established on explicit time-stepping, collocation with multiquadrics radial basis functions on non-uniform five-nodded influence domains, and adaptive upwinding technique. The velocity–pressure coupling of the incompressible flow is resolved by the explicit Chorin’s fractional step method. The advantages of the method are its simplicity and efficiency, since no polygonisation is involved, easy adaptation of the nodal points in areas with high gradients, almost the same formulation in two and three dimensions, high accuracy and low numerical diffusion. The results are carefully presented and tabulated, together with the results obtained by ANSYS-Fluent, which would in the future permit straightforward comparison with other numerical approaches as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.