Abstract

Solution nuclear magnetic resonance (NMR) spectroscopy has come a long way in characterizing the structure and function of biological molecules since the first one-dimensional spectrum of protein was recorded about 30 years ago. To date (September 1, 2012), there are 9,521 solution NMR structures in the Protein Data Bank, compared to 74,009 determined by crystallographic methods. Unlike X-ray and electron microscopy (EM) methods, which are based on the concepts of Fourier optics and image reconstruction, structure determination by NMR involves measuring structural restraints and finding structural solutions that satisfy the restraints. Although the NMR approach is much less direct in a physical sense, it has proven itself over the years to be capable of de novo structure determination at high precision. Moreover, the method is highly versatile and can be used in a variety of ways for addressing mechanistic questions. NMR measurements of protein internal dynamics and protein-protein or protein-ligand interaction are directly relevant to function in vivo because the molecules are often in physiological buffer conditions. The method can also be applied to investigate protein-folding intermediates, conformational changes, as well as intrinsically unfolded proteins. Recently, along with X-ray and EM, solution NMR has entered a state of rapid growth for structural studies of membrane proteins, already demonstrating its feasibility in de novo structure determination of membrane-embedded ion channels and receptors. As the hardware advances rapidly, especially in cryogenic probes that have much higher sensitivity, the sample concentration required for solution NMR investigation is decreasing, hopefully soon to a concentration level at which nonspecific protein aggregation is no longer an issue. After three decades of improvement in spectrometer technology, NMR pulse experiments, isotope labeling schemes, and structure determination software, we believe that solution NMR will truly enter the production phase in the next decade to answer biological questions of high impact, and to become more versatile than ever in complementing X-ray and EM in investigating protein structure and function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.