Abstract

We study a facility location problem where a single facility serves multiple customers each represented by a (possibly non-convex) region in the plane. The aim of the problem is to locate a single facility in the plane so that the maximum of the closest Euclidean distances between the facility and the customer regions is minimized. Assuming that each customer region is mixed-integer second order cone representable, we firstly give a mixed-integer second order cone programming formulation of the problem. Secondly, we consider a solution method based on the Minkowski sums of sets. Both of these solution methods are extended to the constrained case in which the facility is to be located on a (possibly non-convex) subset of the plane. Finally, these two methods are compared in terms of solution quality and time with extensive computational experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.