Abstract

Given a set of circles C e lc1, …, cnr on the Euclidean plane with centers l(a1, b1), …, (an, bn)r and radii lr1, …, rnr, the smallest enclosing circle (of fixed circles) problem is to find the circle of minimum radius that encloses all circles in C. We survey four known approaches for this problem, including a second order cone reformulation, a subgradient approach, a quadratic programming scheme, and a randomized incremental algorithm. For the last algorithm we also give some implementation details. It turns out the quadratic programming scheme outperforms the other three in our computational experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.