Abstract

Several DNA oligonucleotides have been photochemically modified with the furocoumarin 4′-hydroxymethyl-4,5′,8-trimethylpsoralen (HMT) such that each contained a single HMT furan side monoadduct to thymidine at a unique 5′ TpA 3′ sequence. When these oligonucleotides were hybridized to their respective complements, the HMT adduct could be driven to form an interstrand crosslink by irradiation of the hybrid with 360 nm light. The ability to crosslink probe-target complexes has allowed us to determine the kinetics and the extent of hybridization in solution between these oligonucleotides and their complementary sequences in single-stranded bacteriophage M13 DNA. Our data indicate that these parameters are strongly influenced by the existence of local as well as global secondary structure in the viral DNA. During hybridization, rearrangement of this secondary structure so as to expose the target sequence can be rate-limiting. Upon attainment of equilibrium, only a portion of the target sequence may be hybridized to the probe with the remainder involved in intrastrand base-pairing. Using crosslinkable oligonucleotide probes hybridized and irradiated near the melting temperature of the respective probe-target complex one can partially overcome these secondary structure effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.