Abstract
When particles are injected according to the Fowler–Nordheim (FN) field emission equation, the transmitted current density will transition to the space charge limited (SCL) current density, with increasing applied diode voltage. The actual transmitted current density is the so-called SCL-FN current density. In this work, Barbour’s analytic solution for the SCL-FN current density is modified with consideration of injection velocity and also geometric effects, by solving the advanced FN equation with the effective field enhancement factor, the energy conservation equation with an initial velocity term, and Poisson’s equation simultaneously. The solution is also extended to the relativistic regime where similar transition process is found. This solution has been verified using particle-in-cell simulation with varying diode voltage, electron injection velocity, and field enhancement factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.