Abstract

Background: Robot kinematics suggests and interprets the relationship exists between the kinematic position connectivity and acceleration of each link. In any of the robot manipulator the kinematics solution may be forward kinematics or inverse kinematics. To determine the joint values for a provided desired end effector orientation and position, the inverse kinematics principle is applied. Inverse kinematics is the usage of kinematics equations of a robot to find out the joint parameters that gives a targeted position of the end-effector. Methods/Statistical Analysis: In this paper, inverse kinematic solution for a five joint robot involving intelligent prediction response method has been developed and the result will be analyzed based on the performance. The intelligent prediction response method will give the performance based result, which shows the five various angles of an industrial robot. The single variation in the joint angle will be analyzed for every joint angles. This method based inverse kinematics solution is much more useful in real-time adaptive robot control where shorter calculation times are required. Findings: The MATLAB 13.0 is used to find the solution for a set of joint parameters. The actual reading and MATLAB program was found acceptable level. Applications/Improvements: To solution provided for the inverse kinematics problem with number of joint angles using the intelligent prediction response method such as artificial neural network is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.