Abstract

Chalcogenide perovskites, including BaZrS3, have been suggested as highly stable alternatives to halide perovskites. However, the synthesis of chalcogenide perovskites has proven to be a significant challenge, often relying on excessively high temperatures and methods that are incompatible with device integration. In this study, we developed a solution-based approach to the deposition of BaZrS3. This method utilizes a combination of a soluble barium thiolate and nanoparticulate zirconium hydride. Following solution-based deposition of the precursors and subsequent sulfurization, BaZrS3 can be obtained at temperatures as low as 500 °C. Furthermore, this method was extended to other chalcogenide perovskite (BaHfS3) and perovskite-related (BaTiS3) materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.