Abstract

The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.

Highlights

  • Zika virus (ZIKV) was a neglected, mosquito-borne flavivirus because of its assumed small geographical spread and mild clinical symptoms [1] such as fever, headache, rashes and etc [2]

  • The linked NS2B-NS3pro protein was detected in the pellet of E. coli cells with induction of 1 mM isopropyl β-D-thiogalactopyranoside (IPTG) for four hours at 37 ̊C, while a portion of recombinant protein was found to be in supernatant with induction of 0.2 mM IPTG overnight at 18 ̊C

  • Our results suggest that in the Zika NS2B-NS3pro complex, NS2B has a portion of residues undergo μs-ms dynamics which made their NMR peaks too broad to be detectable; while the rest of NS2B is highly disordered and lacks tight tertiary packing, which results in a narrowly-dispersed HSQC spectrum (S2B Fig)

Read more

Summary

Introduction

Zika virus (ZIKV) was a neglected, mosquito-borne flavivirus because of its assumed small geographical spread and mild clinical symptoms [1] such as fever, headache, rashes and etc [2]. The first biological ZIKV sample was isolated from a sentinel rhesus monkey in the Zika. It is estimated that one-third of the world population might be at risk of infection [6]. The rapid rise in ZIKA infection is compounded by the ease of vertical [7] and sexual human-to-human transmissions [8]. WHO has declared a public health emergency for ZIKV infection [15]. ZIKV represents a significant challenge to the public health of the whole world but there is no available effective vaccine or therapy so far

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call