Abstract

The main limit for the calcium looping process is the sharp decrease of the capture capacity of the CO2 sorbents during multiple cycles. In this research, a solution combustion method was employed to synthesize MgO-stabilized CaO sorbents. Polyethylene glycol (PEG) was used as the fuel and dispersant, with the purpose to enhance the uniformity of the Ca and Mg distributions in the sorbent. The results show that highly reactive MgO-stabilized CaO sorbents can be obtained through a solution combustion method using PEG as the fuel and dispersant. The existence of MgO can effectively restrain the sintering of the sorbent, resulting in a more porous and stable micro-structure of the sorbent. The CO2 capture capacity of the MgO-stabilized CaO sorbent synthesized under the optimum conditions is 0.40 g(CO2)/g(sorbent) after 20 cycles, which is 75.3% higher than CaCO3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call