Abstract

We consider several nonlinear evolution equations sharing a nonlinearity of the form ∂2u2/∂t2. Such a nonlinearity is present in the Khokhlov–Zabolotskaya equation, in other equations in the theory of nonlinear waves in a fluid, and also in equations in the theory of electromagnetic waves and ion–sound waves in a plasma. We consider sufficient conditions for a blowup regime to arise and find initial functions for which a solution understood in the classical sense is totally absent, even locally in time, i.e., we study the problem of an instantaneous blowup of classical solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.