Abstract

The Cauchy problem for a nonlinear Sobolev-type differential equation modeling moderately long small-amplitude longitudinal waves in a viscoelastic rod is investigated in a space of continuous functions defined on the entire number line that have limits at infinity. Conditions for the existence of a global solution and for finite time solution blow-up are examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.