Abstract

A small series of copoly(α,l-glutamic acid/dl-allylglycine)s with the same chain length and allylglycine content (∼10 mol %) but different spatial distribution of allylglycine units was synthesized and subsequently glycosylated via thiol-ene chemistry. Dilute aqueous copolypeptide solutions (0.1 wt %, physiological saline) were analyzed by circular dichroism spectroscopy, dynamic light scattering, and cryogenic transmission electron microscopy. The copolypeptides adopted a random coil or α-helix conformation, depending on solution pH, and the glycosylated residues either distorted or enhanced the folding into an α-helix depending on their location and spatial distribution along the chain. However, regardless of their secondary structure and degree of charging, all partially glycosylated copolypeptides self-assembled into 3D spherical structures, supposedly driven by a hydrophilic effect promoting microphase separation into glucose-rich and glutamate-rich domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.