Abstract

A system of two nonlinear differential equations with slowly varying coefficients is treated. The asymptotics in the small parameter for the solutions that have a narrow transition layer is studied. Such a layer occurs near the moment where the number of roots of the corresponding algebraic system of equations changes. To construct the asymptotics, the matching method involving three scales is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.