Abstract
In this thesis three solution approaches for multiobjective nonlinear optimization problems are discussed. First, a class of multiobjective descent algorithms is introduced that can be understood as generalizations of descent algorithms known for the singleobjective case. Several variants are investigated and compared with the weighted sum method. Furthermore, multiobjective convex quadratic optimization problems with linear constraints are discussed in the second part. Using the KKT conditions a parametric linear complementarity problem is derived which leads to the definition of efficient complementary bases and the decomposition of the parameter space of the weighted sum method. Properties of the associated cells are discussed and a pivoting algorithm is developed. Additionally, generalizations and special cases for multiobjective convex quadratic optimization problems are discussed and an application to multiobjective location theory is outlined. In the final section, a scheme for the approximation of the efficient solutions and the weight space decomposition of multiobjective convex optimization problems is introduced and analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.