Abstract

Stable, high-index facet Re nanoparticles have been grown by a solid state synthetic method, negating the need for solutions or surfactants to control seeding, supracrystallization and NP shape. By using mixtures of K[ReO4] and the cyclic triphosphazene [NP(O2C12H8)]3, high-index facet nanoparticles and nanocrystals ∼3 nm in size can be seeded and grown from drop-cast films and powders due to phase demixing of the metallopolymer. NP dispersions are formed directly within a carbon support that liquefies, allowing NP coarsening and ripening, and the eventual formation of a solidified graphitic support filled with crystals. Successful growth of mesoscale supracrystals of Re also occurs from ripening of nucleated NP seeds, incubated within a solidified and partially dewetted solid support that patterns the surface. The supported Re NP dispersions also exhibit surface enhanced Raman scattering within a graphitic matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.