Abstract

The interaction between solute atoms (Mg, Si, Ti) and grain boundaries (GBs) of different types in Al are investigated using two approaches: first principles total energy calculations and large scale atomistic simulations. We have found that both deformation (size effect) and electronic (charge transfer) mechanisms play an important role in solute–GB interaction. The deformation and electronic contributions to GB segregation energy for the considered solutes have been analyzed in dependence on the impurity and the GB type. Mg and Si atoms are calculated to segregate to GBs, while Ti atoms to repel from, GBs in Al. For the case of a symmetric special-type GB the interaction is found to be short-ranged. For a general-type GB the range of GB–solute interaction is found to be considerably longer. A method to estimate the segregation capacity of a GB has been proposed, which takes into account the solute–solute interactions, and shown to be able to correctly describe the GB enrichment in alloying elements. The features of the segregation formation in fine-grained materials produced by severe plastic deformation are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call