Abstract

The ATP-binding cassette (ABC) transporter superfamily is one of the most widespread of all gene families and currently has in excess of 1100 members in organisms ranging from the Archaea to manQ1. The movement of the diverse solutes of ABC transporters has been accepted as being strictly unidirectional, with recent models indicating that they are irreversible. However, contrary to this paradigm, we show that three solute-binding protein-dependent (SBP) ABC transporters of amino acids, i.e. the general amino acid permease (Aap) and the branched-chain amino acid permease (Bra) of Rhizobium leguminosarum and the histidine permease (His) of Salmonella typhimurium, are bidirectional, being responsible for efflux in addition to the uptake of solutes. The net solute movement measured for an ABC transporter depends on the rates of uptake and efflux, which are independent; a plateau is reached when both are saturated. SBP ABC transporters promote active uptake because, although the Vmax values for uptake and efflux are not significantly different, there is a 103-104 higher affinity for uptake of solute compared with efflux. Therefore, the SBP ABC transporters are able to support a substantial concentration gradient and provide a net uptake of solutes into bacterial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.