Abstract

We discussed in chapter 4 the movement of solute between small volumes of soil, and in chapter 5 some properties of plant roots and associated hairs, particularly the relation between the rate of uptake at the root surface and the concentration of solute in the ambient solution. In the chapters to follow, we consider the plant root in contact with the soil, and deal with their association in increasingly complex situations; first, when the root acts merely as a sink and, second, when it modifies its relations with the surrounding soil by changing its pH, excreting ions, stimulating microorganisms, or developing mycorrhizas. In this chapter, we take the simplest situation that can be studied in detail, namely, a single intact root alone in a volume of soil so large that it can be considered infinite. The essential transport processes occurring near the root surface are illustrated in figure 6.1. We have examined in chapter 3 the rapid dynamic equilibrium between solutes in the soil pore solution and those sorbed on the immediately adjacent solid surfaces. These sorbed solutes tend to buffer the soil solution against changes in concentration induced by root uptake. At the root surface, solutes are absorbed at a rate related to their concentration in the soil solution at the boundary (section 5.3.2); and the root demand coefficient, αa, is defined by the equation . . . I = 2παaCLa (6.1) . . . where I = inflow (rate of uptake per unit length), a = root radius, CLa = concentration in solution at the root surface. To calculate the inflow, we have to know CLa, and the main topic of this chapter is the relation between CLa, and the soil pore solution concentration CL. The root also absorbs water at its surface due to transpiration (chapter 2) so that the soil solution flows through the soil pores, thus carrying solutes to the root surface by mass flow (convection). Barber et al. (1962) calculated whether the nutrients in maize could be acquired solely by this process, by multiplying the composition of the soil solution by the amount of water the maize had transpired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.