Abstract

Measurements of the quantum yield of self-sensitized 1,3-diphenylisobenzofuran peroxidation as a function of dissolved oxygen of added azulene concentrations indicate that oxygen quenching of the sensitizer singlet state produces both triplet and ground states of the sensitizer in addition to O 2( 1Δ g) and O 2( 3Σ − g). This partitioning of quenching products may be due to the competitive relaxation of the initially formed complex (oxciplex), or to sequential relaxation of different oxciplex states in which symmetry and spin barriers are negotiated by complex dissociation and re-encounter of the solute pair in the required configuration. The latter interpretation provides re-encounter probabilities for the processes M(T 1) + O 2( 1Δ g) → M(T 1) + O 2( 3Σ − g) and M(T 1) + O 2( 3Σ − g) → M(S o) + O 2( 1Δ g) from which estimated rate constants are compatible with theoretical expectation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.