Abstract
In-channel vegetation is ubiquitous in aquatic environments and plays a critical role in the fate and transport of solutes and particles in aquatic ecosystems. Recent studies have advanced our understanding of the role of vegetation in solute flow and particle transport in aquatic ecosystems. This review summarizes these papers and discusses the impacts of emergent and rigid vegetation on the surface flow, the advection and dispersion of solutes, suspended load transport, bedload transport, and hyporheic exchange. The two competing effects of emergent vegetation on the above transport processes are discussed. On the one hand, emergent vegetation reduces mean flow velocity at the same surface slope, which reduces mass transport. On the other hand, at the same mean flow velocity, vegetation generates turbulence, which enhances mass transport. Mechanistic understanding of these two competing effects and predictive equations derived from laboratory experiments are discussed. Predictive equations for the mean flow velocity and turbulent kinetic energy inside an emergent vegetation canopy are derived based on force and energy balance. The impacts of emergent vegetation on the advection-dispersion process, the suspended load and bedload transport, and the hyporheic exchange are summarized. The impacts of other vegetation-related factors, such as vegetation morphology, submergence, and flexibility, are briefly discussed. The role of vegetation in transporting other particles, such as micro- and macro-plastics, is also briefly discussed. Finally, suggestions for future research directions are proposed to advance the understanding of the dynamic interplays among natural vegetation, flow dynamics, and sedimentary processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.