Abstract
The feasibility of achieving improved combinations of strength and toughness in aluminum alloy 2524 through solute enhanced strain hardening (SESH) has been explored in this study and shown to be viable. The effectiveness of SESH is directly dependent on the strain hardening rate (SHR) of the material being processed. Aluminum alloy 2524 naturally ages to the T4-temper after solution heat treating and quenching. The SHR of strain free and post cold rolled material as a function of natural aging time has been measured by means of simple compression. It has been determined that the SHR of AA2524 is more effective with solute in solution rather than clustered into GP zones. It has also been shown that the typical rapid formation of GP zones at room temperature (natural aging) is inhibited by moderate cold rolling strains (ɛCR ≥ 0.2) through dislocation aided vacancy annihilation.The practical limitations of quenching rate have been determined using hardness and eddy current electrical conductivity measurements. It has been shown that too slow of a quench rate results in solute being lost to both the formation of GP zones and embrittling precipitates during the quench, while too rapid of a quench rate results in mid-plane cracking of the work piece during the SESH processing. The mid-plane cracking was overcome by using an uphill quenching procedure to relieve residual stresses within the work piece. Aluminum alloy 2524 strengthened through SESH to a yield strength 11% greater than that in the T6-Temper exhibits: equivalent toughness, 5% greater UTS, 1% greater elongation, 7% greater R.A., and absorbs 15% more energy during tensile testing. At yield strengths comparable to published data for 2x24 alloys, the SESH 2524 exhibited up to a 60% increase in fracture toughness. The fractured surfaces of the SESH material exhibited transgranular dimpled rupture as opposed to the grain boundary ductile fracture (GBPF) observed in the artificially aged material.%%%%Ph.D., Materials Science and Engineering – Drexel University, 2011
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.