Abstract
The solute carriers (SLCs) are membrane proteins that transport many endogenous and exogenous substances such as xenobiotic toxins. Bivalve mollusks, mainly feeding on microalgae, show marked capacity to accumulate paralytic shellfish toxins (PSTs), the most common and hazardous marine biotoxins produced by dinoflagellates. Exploring the SLCs related to PST accumulation in bivalve could benefit our understanding about the mechanisms of PST bioavailability in bivalve and the adaptations of these species. Herein, we provided the first systematic analysis of SLC genes in mollusks, which identified 673 SLCs (PySLCs, 48 subfamilies) in Yesso scallop (Patinopecten yessoensis), 510 (48 subfamilies) in Pacific oyster (Crassostrea gigas), and 350 (47 subfamilies) in gastropod owl limpet (Lottia gigantea). Significant expansion of subfamilies SLC5, SLC6, SLC16, and SLC23 in scallop, and SLC46 subfamily in both scallop and oyster were revealed. Different PySLC members were highly expressed in the developmental stages and adult tissues, and hepatopancreas harboured more specifically expressed PySLCs than other tissues/organs. After feeding the scallops with PST-producing dinoflagellate, 131 PySLCs were regulated and more than half of them were from the expanded subfamilies. The trend of expression fold change in regulated PySLCs was consistent with that of PST changes in hepatopancreas, implying the possible involvement of these PySLCs in PST transport and homeostasis. In addition, the PySLCs from the expanded subfamily were revealed to be under positive selection, which might be related to lineage-specific adaptation to the marine environments with algae derived biotoxins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.