Abstract
The solute carrier family 35 (SLC35) comprises multiple members of transporters, including a group of proteins known as nucleotide sugar transporters (NSTs), an adenosine triphosphate (ATP) transporter, 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporters, and transporters of unknown function. To date, seven subfamilies (A to G) and 32 members have been classified into this large SLC35 family. Since the majority of glycosylation reactions occur within the lumen of the endoplasmic reticulum (ER) and Golgi apparatus, the functions of NSTs are indispensable for the delivery of substrates for glycosylation. Recent studies have revealed the diverse functions of this family of proteins in the regulation of numerous biological processes, including development, differentiation, proliferation, and disease progression. Furthermore, several congenital disorders of glycosylation (CDGs) resulting from variations in the SLC35 family member genes have been identified. To elucidate the pathology of these diseases, a variety of knockout mice harboring mutations in the family member genes have been generated and employed as animal models for CDGs. This review presents a historical overview of the SLC35 family, with a particular focus on recent advances in research on the functions of this family and their relationship to human diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.