Abstract

Drought is one of the main abiotic factors that determine forest species growth, survival and productivity. For this reason, knowledge of plant drought response and the identification of physiological traits involved in stress tolerance will be of interest to breeding programs. In this work, several Pinus radiata D. Don breeds from different geographical origins were evaluated along a water stress period (4 weeks) and subsequent rewatering (1 week), showing different responses among them. Leaf water potential (Ψ(leaf)) and osmotic potential decreases were accompanied by a variation in the total relative water content (RWC, %). The most tolerant breeds presented the lowest leaf water potential and RWC at turgor loss point, and showed the lowest elastic modulus (ε) values. A high ε value was a characteristic of a less-drought-tolerant plant and was related to membrane alterations (high electrolyte leakage percentages) that could favor cell water loss. Of the group of solutes that contributed to osmotic adjustment, soluble carbohydrates were the most abundant, although stressed plants also increased their content of free amino acids [mainly proline (Pro) and glutamic acid (Glu), and γ-aminobutyric acid (GABA)] and free polyamines. In addition, the most sensitive breeds had a higher GABA/Glu ratio. After rewatering, Pro and GABA were higher in rehydrated plants than in controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.