Abstract

In this paper we have developed the numerical solution of two problems of diffusion-convection (DC), using the finite element method of Streamline Upwind Petrov-Galerkin (SUPG). The parameters that define the behavior of the equations are modeled as stochastic fields, specifically, are used: the convective velocity, diffusion and heat capacity as values of random type. Therefore, we have included SUPG method to DC, with dominant convection, with the stochastic spectral finite element method. Each parameter was described by Karhunen-Loève expansion, while the unknown is represented by the polynomial expansion of the chaos. The objectives of the paper are: 1. To study the influence of stochastic fields in solving problems with SUPG DC and 2. Get the solution of each expansion unknown variable. The results show the versatility of the method for solving different physical problems due to the generality of the statistical description of the solution and the richness in the representation of the areas where there is the greater variability in response. The patterns shown in the unknown uncertainty depends on the dynamics of diffusion, convective velocity and the type of solution used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.