Abstract
BackgroundToll-like receptor (TLR) signalling begins early in subarachnoid haemorrhage (SAH), and plays a key role in inflammation following cerebral aneurysm rupture. Available studies suggest significance of endogenous first-line blockers of a TLR pathway—soluble TLR2 and 4.MethodsEighteen patients with SAH and acute hydrocephalus underwent endovascular coiling and ventriculostomy; sTLR2 and 4 levels were assayed in cerebrospinal fluid (CSF) collected on post-SAH days 0–3, 5, and 10–12. Release kinetics were defined. CSF levels of sTLR2 and 4 were compared with a control group and correlated with the clinical status on admission, the findings on imaging, the degree of systemic inflammation and the outcome following treatment.ResultsNone of study group showed detectable levels of sTLR2 and 4 on post-SAH day 0–3. 13 patients showed increased levels in subsequent samples. In five SAH patients sTLR2 and 4 levels remained undetectable; no distinctive features of this group were found. On post-SAH day 5 the strongest correlation was found between sTLR2 level and haemoglobin level on admission (cc = -0.498, P = 0.037). On post-SAH day 10–12 the strongest correlation was revealed between sTLR2 and treatment outcome (cc = -0.501, P = 0.076). Remaining correlations with treatment outcome, status at admission, imaging findings and inflammatory markers on post-SAH day 5 and 10–12 were negligible or low (-0.5 ≤ cc ≤ 0.5).ConclusionsIn the majority of cases, rupture of a cerebral aneurysm leads to delayed release of soluble TLR forms into CSF. sTLR2 and 4 seem to have minor role in human post-SAH inflammation due to delayed release kinetics and low levels of these protein.
Highlights
Toll-like receptors (TLRs) play a key role in innate immunity
On postSAH day 5 the strongest correlation was found between sTLR2 level and haemoglobin level on admission
In the majority of cases, rupture of a cerebral aneurysm leads to delayed release of soluble TLR forms into cerebrospinal fluid (CSF). sTLR2 and 4 seem to have minor role in human post-subarachnoid haemorrhage (SAH) inflammation due to delayed release kinetics and low levels of these protein
Summary
Toll-like receptors (TLRs) play a key role in innate immunity. These abundantly expressed receptors recognise pathogen-associated molecular patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs). Soluble forms of TLRs (sTLRs) found in body fluids are considered to be a first-line blockade in TLR signalling. Released extracellular domains of TLR 2 and 4 behave as a decoy receptors. They are capable of ligand (PAMPs and DAMPs) binding, but do not transmit the signal downstream [2]. Toll-like receptor (TLR) signalling begins early in subarachnoid haemorrhage (SAH), and plays a key role in inflammation following cerebral aneurysm rupture. Available studies suggest significance of endogenous first-line blockers of a TLR pathway—soluble TLR2 and 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.