Abstract

We have developed a method to convert membrane-bound replication complexes isolated from Nicotiana benthamiana plants infected with potato virus X (PVX) to a soluble, template-dependent system for analysis of RNA synthesis. Analysis of RNA-dependent RNA polymerase activity in the membrane-bound, endogenous template extracts indicated three major products, which corresponded to double-stranded versions of PVX genomic RNA and the two predominant subgenomic RNAs. The endogenous templates were removed from the membrane-bound complex by treatment with BAL 31 nuclease in the presence of Nonidet P-40 (NP-40). Upon the addition of full-length plus- or minus- strand PVX transcripts, the corresponding-size products were detected. Synthesis was not observed when red clover necrotic mosaic dianthovirus (RCNMV) RNA 2 templates were added, indicating template specificity for PVX transcripts. Plus-strand PVX templates lacking the 3′ terminal region were not copied, suggesting that elements in the 3′ region were required for initiation of RNA synthesis. Extracts that supported RNA synthesis from endogenous templates could also be solublized using sodium taurodeoxycholate and then rendered template-dependent by BAL 31 nuclease/NP-40 treatment. The solubilized preparations copied both plus- and minus-strand PVX transcripts, but did not support synthesis from RCNMV RNA 2. These membrane-bound and soluble template-dependent systems will facilitate analyses of viral and host components required for PVX RNA synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.