Abstract

Malus micromalus Makino has great commercial and nutritional value. The regression and classification models were investigated by using near-infrared hyperspectral imaging (NIR-HSI) combined with chemometrics to improve the efficiency of non-destructive detection. The successive projections algorithm (SPA), interval random frog, and competitive adaptive reweighted sampling were employed to extract effective wavelengths sensitive to changes of soluble solid content (SSC) and firmness index (FI) information. Two types of assessment models based on full spectrum and effective wavelengths, namely partial least squares regression and extreme learning machine, were established to predict SSC and FI. In addition, the classification models based on the support vector machine improved by the grey wolf optimizer (GWO-SVM) and partial least squares discrimination analysis were constructed to differentiate maturity stage. The SPA-ELM and SPA-GWO-SVM models achieved satisfactory performance. The results illustrate that NIR-HSI is feasible for evaluation of the quality of Malus micromalus Makino.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call